Биохимические изменения в яйце при оплодотворении. Ооплазматическая сегрегация.

Ооплазматическая сегрегация яйцеклетки

Ооплазматическая сегрегация: перераспределение биологически активных молекул (локальных детерминант) в цитоплазме яйцеклетки в результате ее активации.

Во время движения мужского пронуклеуса в яйце происходят сложные перемещения цитоплазмы. В результате она становится более неоднородной. Эти процессы получили название ооплазматическои сегрегации (разделения). Они хорошо заметны в тех случаях, когда разные участки цитоплазмы содержат разноцветные гранулы (желток, темный пигмент и др.). У хорошо изученных в этом отношении асцидий (сидячих морских животных) и амфибий перемещения цитоплазмы приводят к тому, что яйцеклетка приобретает двустороннюю симметрию. Так, у амфибий напротив точки вхождения сперматозоида формируется светлый участок цитоплазмы — «серый серп» ( рис. 138 ). Кортекс яйца (наружный слой толщиной в несколько мкм) поворачивается примерно на 30* относительно внутренних слоев яйца в направлении, которое зависит от места проникновения сперматозоида. При этом возникает «серый серп», который расположен напротив места проникновения сперматозоида. У асцидий Styela на этом месте образуется «желтый серп» — здесь скапливается желтый пигмент, который до этого был распределен равномерно в поверхностном слое цитоплазмы ( рис. 139 , А). В обоих случаях плоскость, проведенная через точку вхождения сперматозоида и середину «серпа», становится плоскостью первого деления зиготы и плоскостью симметрии.

В яйцеклетках асцидий удается обнаружить и другие области, различающиеся по составу и цвету включений. Наблюдения показали, что эти области цитоплазмы попадают в строго определенные клетки зародыша, из которых формируются строго определенные ткани ( рис. 139 , Б).

Механизмы движения цитоплазмы в деталях не изучены. Очевидно, что главную роль в этих перемещениях играет цитоскелет . В частности, важная роль может принадлежать центриоли сперматозоида и отходящим от нее микротрубочкам. С помощью вещества колхицина, нарушающего сборку микротрубочек, ооплазматическую сегрегацию удается подавить.

Можно предположить, что в разных участках цитоплазмы яйцеклетки содержатся различные вещества (их назвали локальными детерминантами , т.е. «определителями»), которые определяют судьбу клеток. (Еще один пример локальных детерминант — это вещества полярных гранул, наличие которых необходимо и достаточно для развития первичных половых клеток). Один из экспериментов, которые ставились для проверки этой гипотезы, заключался в центрифугировании яиц асцидий. При быстром вращении в центрифуге разные зоны цитоплазмы меняют свое расположение и частично смешиваются. У асцидий это приводит к тому, что образуются «хаотические» зародыши. У них имеются, как и в норме, мышечные, нервные, покровные и другие клетки. Однако клетки эти беспорядочно расположены и не образуют органов. В других опытах центрифугирование не приводило к нарушению развития. Возможно, это связано с тем, что локальные детерминанты прочно связаны с элементами цитоскелета, которые не удается сместить центрифугированием. Можно сделать вывод, что у таких животных, как асцидий, уже в яйце «намечаются» будущие стороны тела и расположение основных органов зародыша. Эта разметка представляет собой неравномерное распределение локальных детерминант. Попадание детерминант в клетку определяет ее дальнейшую судьбу.

Химическая природа локальных детерминант во многих случаях не изучена, так как выделить их в чистом виде не удается. Однако механизмы их действия интенсивно изучаются современными методами. Так, в клетках зародыша асцидий первыми признаками дифференцировки клеток служит появление в них специфических ферментов. В будущих мышечных клетках появляется фермент ацетилхолинэстераза, в клетках кишечника — фермент щелочная фосфатаза. Можно выявлять активность этих ферментов и тем самым узнать, началась ли дифференцировка. Оказалось, что в ряде случаев подавление транскрипции нарушает дифференцировку. Можно предполагать, что в этих случаях локальные детерминанты — это активаторы транскрипции соответствующих генов.

Механизмы движения цитоплазмы в деталях не изучены. Очевидно, что главную роль в этих перемещениях играет цитоскелет . В частности, важная роль может принадлежать центриоли сперматозоида и отходящим от нее микротрубочкам. С помощью вещества колхицина, нарушающего сборку микротрубочек, ооплазматическую сегрегацию удается подавить.

Ооплазматическая сегрегация в разных типах яиц, ее морфогенетическая роль. Цитологические механизмы определения сагиттальной плоскости в яйцеклетке амфибий.

После проникновения сперматозоида начинаются процессы расслоения, отмешивания различных составных частей цитоплазмы яйцеклетки (ооплазмы) – ооплазматическая сегрегация.

Намечается радиальная (относительно анимально-вегетативной оси) симметрия.

У амфибий желтый (где вошел сперматозоид) и серый серпы. Через их середину проходит сагиттальная плоскость симметрии.

Ооплазматическая сегрегация при дроблении.

У многих беспозвоночных разные бластомеры дают начало строго определенным зачаткам. Видимо, это обусловлено ооплазматической сегрегацией при дроблении и взаимодействиями между бластомерами.

Движения цитоплазмы хорошо заметны в тех случаях, когда разные участки цитоплазмы содержат разноцветные гранулы (желток, темный пигмент и др.). Например, у гребневиков по периферии яйцеклетки располагается зеленая цитоплазма (до стадии 8 бластомеров). После деления становятся неравномерными: крупные бластомеры отпочковывают от себя микромеры, которые целиком состоят из зеленой эктоплазмы. Микро- и макромеры резко отличаются по своей будущей судьбе и не способны ее изменить.

При спиральном дроблении (например, кольчатые черви и моллюски) на вегетативном полюсе есть полярная плазма. После 3 деления она вся попадает в один бластомер (1D, вегетативное полушарие, спинная сторона). Позже она большей частью попадает в 2d и 4d, из которых развивается большая часть эктодермы и целомическая мезодерма. Те, при удалении полярной плазмы, возникают личинки, лишенные мезодермы и некоторых эктодермальных закладок.

Дробление. Типы и закономерности пространственного расположения бластомеров.

Общая характеристика процесса дробления. Его биологический смысл. Особенности

клеточного цикла при дроблении.

Дробление начинается после оплодотворения и активации. Организм становится многоклеточным. Дробление – ряд непрерывно следующих друг за другом митотических делений, но рост отсутствует. Образуется полость внутри – бластоцель. Положение частей цитоплазмы не меняется, но они попадают в разные бластомеры. Ядерно-плазменное отношение в начале дробления достигает уровня, характерного для обычных соматических клеток.

Особенности клеточного цикла: 1. синтез ДНК начинается уже в пронуклеусах (все факторы инициации синтеза и репликации (полимеразы, гистоны и др) уже есть в яйце с оогенеза). 2. Клеточные циклы укорочены за счет G1 и G2 периодов (опять же потому, что все нужные продукты есть в яйце). 3. S период укорочен за счет полирепликонности клеток эукариот – каждый репликон может реплицироваться автономно.

Пространственная организация дробления. Значение количества и распределения желтка.

Цитотомия осуществляется с помощью двух механизмов: 1. образование кольца из сократимых микрофиламентов 2. встраивание запасенных предшественников цитоплазмы. Кольцо образуется в кортикальном слое клетки, в плоскости, перпендикулярной прямой, соединяющей клеточные центры. Процесс деления цитоплазмы начинает первый способ, а заканчивает второй. У маложелтковых клеток ярче выражен первый способ, у многожелтковых – второй.

Принято считать, что характер дробления зависит от типа яйцеклетки.

(Классификация яйцеклеток

1. По количеству желтка

* Полилецитальные — содержат большое количество желтка (членистоногие, рыбы, кроме осетровых, рептилии, птицы).

* Мезолецитальные — содержат среднее количество желтка (осетровые рыбы, амфибии).

* Олиголецитальные — содержат мало желтка (моллюски, иглокожие).

* Алецитальные — не содержат желтка (млекопитающие, человек).

2. По распределению желтка по объему яйца

* Телолецитальные — желток смещён к вегетативному полюсу яйцеклетки. Противоположный полюс называется анимальным. Сюда относятся некоторые полилецитальные (рыбы, кроме осетровых, рептилии, птицы) и все мезолецитальные яйца (осетровые рыбы, амфибии).

* Гомо (изо)- лецитальные — желток распределён равномерно. Сюда относятся олиголецитальные ядра (моллюски, иглокожие, млекопитающие).

* Центролецитальные — желток расположен в центре яйцеклетки. Сюда относятся некоторые полилецитальные яйца (членистоногие). Вместо анимального и вегетативного полюсов у этих яиц говорят о переднем и заднем полюсах. В центре яйца расположено ядро, а по периферии — ободок свободной от желтка цитоплазмы. Оба этих района — центр и периферия яйца — связаны тонкими цитоплазматическими мостиками, а всё промежуточное пространство заполнено желтком.)

Основные закономерности спирального дробления.

Спиральное дробление – прогрессивное нарушение симметрии дробящегося яйца в результате спирального смещения завершающих деление бластомеров относительно друг друга. (характерно для первичноротых животных).

При этом типе дробления бластомеры, образовавшиеся в результате экваториальных делений, не располагаются один над другим: бластомеры верхнего ряда, как бы вклиниваются между бластомерами нижнего ряда. При спиральном дроблении веретена дроблений после третьего дробления направлены косо. Борозды дроблений проходят под углом в 45° к меридиану и экватору; следующие борозды проходят под прямым углом к предыдущим и, значит, опять-таки под углом в 45° к экватору. Такая ситуация создается благодаря тому, что в анафазе каждого деления дробления два дочерних бластомера отклоняются от оси веретена в противоположные стороны. После первых двух дроблений образуются четыре бластомера, которые называются основным квартетом и обозначаются А, В, С и D (затем – a, b, c, d итд).

Значение взаимодействия бластомеров для пространственной организации голобластического дробления.

Закономерность голобластического дробления – перпендикулярность первых трех борозд деления.

Расположение образующихся из зиготы бластомеров в пространстве друг относительно друга послужило основанием для определения типов дробления, исходя из расположения бластомеров. Выделяют радиальное (ланцетник), спиральное (моллюски), билатеральное, или двусторонне-симметричное (круглые черви), бисимметричное, или двусимметричное (гребневики), и анархичное (плоские черви) дробления. При радиальном дроблении борозды деления (митотические веретена) ориентированы параллельно или перпендикулярно анимально-вегетативной оси яйцеклетки. Через такую бластулу проходит несколько плоскостей (осей) симметрии. Спиральное дробление отличается нарушением такого соответствия (борозды деления располагаются наклонно к анимально-вегетативной оси), и дочерние бластомеры располагаются как бы по спирали. Образующаяся при спиральном дроблении бластула (стереобластула) не имеет ни полости, ни даже одной плоскости симметрии. Билатеральное дробление характеризуется наличием в формирующейся бластуле одной оси (плоскости) симметрии. При бисимметричном дроблении формирующаяся бластула имеет две оси (плоскости) симметрии. Анархичное деление резко выделяется от описанных выше неупорядоченным расположением бластомеров и отсутствием оси (плоскости) симметрии.

Типы бластул, связь их строения с морфологией дробления.

Дробление начинается после оплодотворения и активации. Организм становится многоклеточным. Дробление – ряд непрерывно следующих друг за другом митотических делений, но рост отсутствует. Образуется полость внутри – бластоцель. Положение частей цитоплазмы не меняется, но они попадают в разные бластомеры. Ядерно-плазменное отношение в начале дробления достигает уровня, характерного для обычных соматических клеток.

2. Ооплазматическая сегрегация

Этим термином обозначают возникновение различий между разными частями цитоплазмы яйца (ооплазмы), разделение (сегрегацию) яйца на зоны с несколько различными свойствами. Обычно ооплазматической сегрегацией называют те перемещения компонентов цитоплазмы, которые происходят после оплодотворения и до начала дробления яйца. В действительности же многие процессы ооплазматической сегрегации осуществляются еще в оогенезе, а некоторые продолжаются и в ходе первых делений дробления.

Простейшая ооплазматическая сегрегация происходит в яйцах морского ежа. После четырех делений дробления бластомеры отличаются по способности образовывать некоторые структуры зародыша (султан на анимальном полюсе и кишку на вегетативном). Эта способность меняется вдоль анимально-вегетативной оси. Такое постепенное изменение свойств яйца называют градиентами. У некоторых видов морских ежей эти градиенты проявляются в виде распределения пигментных гранул, располагающихся близко к одному полюсу или образующих кольцо в области экватора.

Более сложно выглядит ооплазматическая сегрегация в яйце амфибий. Еще в ооците создается неравномерное распределение желтка и пигмента вдоль анимально-вегетативной оси: желтка больше на вегетативном полюсе, пигмент покрывает анимальную половину яйца. Ядро оплодотворенного яйца сильно сдвинуто к анимальному полюсу и окружено цитоплазмой, свободной от желтка. После оплодотворения происходит дальнейшая сегрегация: на одной из сторон яйца (она станет спинной стороной) в области экватора возникает более светлая область — серый серп (будущая хордо-мезодерма). Внутри яйца происходят и другие перемещения. В итоге в яйце амфибий можно различать три различно окрашенные зоны: пигментированную анимальную, или эктодермальную; светлую вегетативную, или энтодермальную; экваториальную кольцевую, более широкую в области серого серпа, — мезодермальную. Если до оплодотворения яйцо имело только одну анимально-вегетативную ось, то теперь в нем можно провести и перпендикулярную ей дорсовентральную ось от спины к животу. Две оси образуют плоскость симметрии, которая делит будущий зародыш на правую и левую половины.

В яйце асцидий до оплодотворения никакой сегрегации не обнаруживается: яйцо можно разрезать пополам в любой плоскости и половина, содержащая ядро, образует нормальный зародыш. Такое яйцо изотропно. После оплодотворения в яйце происходят сложные перемещения, которые удается видеть благодаря наличию в цитоплазме различно окрашенных гранул. В итоге в яйце асцидий можно различить не менее четырех зон — анимальную, вегетативную и две серповидные различно окрашенные области, лежащие на уровне экватора друг против друга.

Очень сложные перемещения происходят в яйцах моллюсков. После оплодотворения на вегетативном полюсе образуется так называемая полярная плазма, которая затем движется вдоль поверхности яйца к анимальному полюсу. У некоторых морских моллюсков ооплазматическая сегрегация выражается еще драматичнее: перед первым делением дробления на вегетативном полюсе временно выпячивается особый вырост — полярная лопасть, которая в ходе первого деления достается одному из двух бластомеров, а после второго деления — одному из четырех. В состав этой лопасти попадает полярная плазма и значительная часть митохондрий яйца.

У морских кишечнополостных — гребневиков оплодотворенные яйца имеют у поверхности зеленый слой — эктоплазму, которая в начале дробления равномерно попадает во все бластомеры. Однако в результате последующих делений образуются две группы клеток: одни из них содержат только эктоплазму, другие лишены ее.

Приведенные здесь примеры относятся к тем случаям, когда за ооплазматической сегрегацией можно следить визуально благодаря различной окраске цитоплазматических компонентов. Ho, наверное, чаще — у большинства видов морских ежей, у костистых рыб, птиц и т. д. — ее просто не видно, хотя она, по всей вероятности, существует. Например, яйцо дрозофилы, как и других насекомых, почти не обнаруживает признаков ооплазматической сегрегации, если не считать особых гранул (половых детерминантов), находящихся на заднем конце яйца. Мы уже говорили, как они определяют судьбу ядер, попавших в эту часть яйца. Почти все остальные ядра — после восьми делений их около 250 — перемещаются из центра яйца к его поверхности, где образуют бластодерму. В это время, как было показано экспериментально, определяется их судьба и ядра, попавшие в определенные зоны поверхностной цитоплазмы, образуют клетки так называемых имагинальных дисков. Из каждого диска (они парные) впоследствии образуются определенные органы взрослой мухи (имаго — взрослая). Поэтому можно утверждать, что цитоплазма поверхности яйца неоднородна и что, хотя она вся внешне выглядит одинаково, в действительности в оогенезе происходит ооплазматическая сегрегация, в ходе которой и возникают различные по свойствам зоны цитоплазмы. Некоторые ядра остаются в центре яйца и образуют специальные желточные клетки.

Интересное:  Если знаешь дату зачатия как определить дату родов

Из сказанного здесь уже ясен смысл ооплазматической сегрегации: создавая первичные различия в составе цитоплазмы, она в результате делений дробления приводит к образованию клеток, отличающихся по составу цитоплазмы. А это, в свою очередь, определяет их дальнейшую судьбу. Таким образом, ооплазматическая сегрегация является первым фактором, создающим исходные различия между клетками, или, иначе, первым (по времени) фактором дифференцировки.

Роль ооплазматической сегрегации доказывается не только описательно, когда различно окрашенные зоны яйца (там, где эти зоны можно видеть и проследить их судьбу) образуют в нормальном развитии строго определенные зачатки зародыша и затем органы. Экспериментальный метод доказательства обычно состоит в разделении ранних зародышей, на стадии двух, четырех и более клеток, на отдельные бластомеры или на их группы и затем в наблюдении за их судьбой. Возвратимся к приведенным выше примерам.

Если яйцо морского ежа на стадии восьми бластомеров разделить на две или четыре части в плоскости анимально-вегетативной оси, то из каждой части, состоящей из четырех или двух клеток, разовьется нормальный зародыш. Если же такой зародыш разделить на две части по экватору, то образуются два ненормальных зародыша: один будет лишен кишки, которая образуется у вегетативного полюса, а другой — султана из длинных ресничек, который расположен с анимальной стороны. Более детальные эксперименты с разделением 16-клеточного зародыша и комбинацией разных клеток показали, что «анимальные» свойства постепенно падают вдоль оси яйца, а навстречу ей так же постепенно нарастают «вегетативные» свойства. Речь, очевидно, идет о градиентах концентраций каких-то веществ или структур вдоль анимально-вегетативной оси.

У амфибий судьба двух разделенных бластомеров зависит от того, как прошла плоскость первого деления. Если она прошла через серый серп и разделила его на две, пусть неравные, части, то оба изолированных бластомера разовьются в нормальных зародышей. Но если случайно первая плоскость деления оставила весь серый серп в одном бластомере, то только он даст нормального зародыша. Другие разнообразные эксперименты показали, что три зоны яйца определяют образование трех зародышевых листков.

В последние годы, однако, получены новые данные, которые говорят о том, что у амфибий первично возникают только две зоны — анимальная и вегетативная, а промежуточная между ними — будущая мезодерма — появляется позже как результат взаимодействия первых двух. Как сочетать эти данные с предыдущими надежными результатами, показывающими ведущую роль серого серпа, пока неясно. Сейчас появились работы, где пересматриваются эти, казалось бы классические, представления о роли серого серпа.

Мы видим, что понятия мозаичного и регуляционного развития должны быть близко связаны с ооплазматической сегрегацией. У мозаичных яиц она обычно более выражена, т. е. яйцо содержит больше различных зон (6–8). Ho главное в том, что различия между участками цитоплазмы яйца у них, очевидно, более глубоки, так как необратимо предопределяют судьбу клеток, которые эту цитоплазму получают. В яйцах регуляционного типа и зон меньше (2–3), и судьба клеток лишь отчасти зависит от состава цитоплазмы. В не меньшей степени она зависит от взаимоотношений между клетками. Благодаря этим взаимным влияниям зародыш, лишенный части клеток, способен нормально развиваться. Яйца же мозаичного типа образуют группу правильно расположенных, но относительно независимых клеток. Если часть их удалить, другие клетки уже не могут изменить свой путь развития и заменить отсутствующие. Таким образом, ооплазматическая сегрегация является важным и первым фактором дифференциации. Вероятно, только при развитии зародышей млекопитающих она не играет заметной роли.

Механизмы создания ооплазматической сегрегации известны плохо. Важнейшие события самой сегрегации или подготовки к ней происходят в оогенезе. Так, в оогенезе амфибий возникают различия вдоль анимально-вегетативной оси, да и сами анимальный и вегетативный полюсы яйца определяются уже в ооците. Предполагают, что полюсы и неравномерное отложение желтка создаются благодаря ориентировке ооцита по отношению к кровеносным сосудам, из которых в яйцо поступает предшественник желтка — вителлогенин.

Место образования серого серпа во многом, если не целиком определяется внешними к яйцу факторами, уже после оплодотворения. Одним из них может служить место вхождения сперматозоида — серый серп образуется с противоположной стороны. Однако этот фактор не единственный, а у большинства видов он, по-видимому, совсем не играет роли.

Если яйцо амфибий (или осетровых рыб) в первое время после оплодотворения наклонить набок и дать ему снова подняться анимальным полюсом вверх, то серый серп образуется в плоскости поворота на той стороне, которая была внизу. Эту манипуляцию можно повторить несколько раз: серый серп образуется в плоскости последнего поворота. Ho через 30–40 мин положение серого серпа детерминируется и изменить его уже нельзя.

Механизм ооплазматической сегрегации у других видов животных практически не изучен. Можно, по-видимому, утверждать, что в оогенезе, например, асцидий образуются различные вещества и структуры, которые до оплодотворения распределены в яйце более или менее равномерно. Ho после оплодотворения эти вещества каким-то образом концентрируются и локализуются в виде полярных плазм, «серпов» и других образований, которые затем закономерно перемещаются по яйцу.

Важную роль в ооплазматической сегрегации, по-видимому, играет поверхность яйца, служащая своеобразным каркасом. Это иллюстрируется опытами, в которых яйца амфибий центрифугировали так, что вся организация яйца нарушалась. Однако после этого происходило постепенное восстановление нормальной организации яйца, включая ту, что была достигнута в результате ооплазматической сегрегации.

Ооплазматическая сегрегация костистых рыб изучалась в нашей лаборатории. У вьюна только что отложенное яйцо шарообразно. Однако в течение первого получаса на его поверхности выделяется тонкий прозрачный свободный от желтка слой, который стягивается к анимальному полюсу и в итоге образует на нем бластодиск — цитоплазматический бугорок, который у вьюна занимает 1/5—1/10 часть объема всего яйца (у разных видов рыб бластодерма составляет от 1/3 до 1/20 всего объема). В бластодиске находится ядро, и только бластодиск делится во время дробления яйца, образуя на анимальной стороне «шапочку» клеток — бластодерму. Оказалось, что в бластодерме сконцентрированы многие (хотя и не все) ферменты яйца — их в ней от 50 до 80 %, т. е. концентрация ферментов в бластодерме в 10–25 раз выше, чем в остальной части яйца, заполненной желтком. Каков механизм такой концентрации? Исследуя это явление разными методами, мы обнаружили, что в бластодерме происходит связывание ферментных молекул со структурами клетки.

Очевидно, ооплазматическая сегрегация у рыб происходит в два этапа. Сначала на поверхности яйца образуется цитоплазматический бугорок — бластодиск. Механизм этого процесса остается неизвестным, но в нем, по-видимому, участвуют структурные белки клеточного скелета, каким-то образом отделяющиеся от массы желтка. Затем уже эти структурные белки связывают ферменты и как бы насасывают их в бластодерму. Этим создается неравномерность распределения ферментов по яйцу, в результате чего запасенные в оогенезе ферментные белки оказываются собранными в клетках зародыша, где они и должны функционировать.

Нам осталось рассмотреть вопрос о том, каким образом ооплазматическая сегрегация создает различия между клетками, т. е. почему некоторые (может быть, небольшие) различия в составе цитоплазмы приводят к разным направлениям дифференцировки. Сами исходные различия в цитоплазме между бластомерами, очевидно, не следует называть дифференцировкой: до определенного времени эти различия никак не сказываются на форме и поведении клеток. Ho затем, часто с началом гаструляции, различия в метаболизме и поведении клеток становятся очевидными. Можно предполагать, что даже небольшие различия цитоплазмы приводят к активации разных наборов генов. Однако каковы те конкретные химические вещества, которые создают различия зон цитоплазмы яйца, и каким образом эти вещества определяют включение разных генов, неизвестно.

У амфибий судьба двух разделенных бластомеров зависит от того, как прошла плоскость первого деления. Если она прошла через серый серп и разделила его на две, пусть неравные, части, то оба изолированных бластомера разовьются в нормальных зародышей. Но если случайно первая плоскость деления оставила весь серый серп в одном бластомере, то только он даст нормального зародыша. Другие разнообразные эксперименты показали, что три зоны яйца определяют образование трех зародышевых листков.

Ооплазматическая сегрегация: перераспределение биологически активных молекул (локальных детерминант) в цитоплазме яйцеклетки в результате ее активации.

Во время движения мужского пронуклеуса в яйце происходят сложные перемещения цитоплазмы. В результате она становится более неоднородной. Эти процессы получили название ооплазматическои сегрегации (разделения). Они хорошо заметны в тех случаях, когда разные участки цитоплазмы содержат разноцветные гранулы (желток, темный пигмент и др.). У хорошо изученных в этом отношении асцидий (сидячих морских животных) и амфибий перемещения цитоплазмы приводят к тому, что яйцеклетка приобретает двустороннюю симметрию. Так, у амфибий напротив точки вхождения сперматозоида формируется светлый участок цитоплазмы — «серый серп». Кортекс яйца (наружный слой толщиной в несколько мкм) поворачивается примерно на 30* относительно внутренних слоев яйца в направлении, которое зависит от места проникновения сперматозоида. При этом возникает «серый серп», который расположен напротив места проникновения сперматозоида. У асцидий на этом месте образуется «желтый серп» — здесь скапливается желтый пигмент, который до этого был распределен равномерно в поверхностном слое цитоплазмы. В обоих случаях плоскость, проведенная через точку вхождения сперматозоида и середину «серпа», становится плоскостью первого деления зиготы и плоскостью симметрии.

В яйцеклетках асцидий удается обнаружить и другие области, различающиеся по составу и цвету включений. Наблюдения показали, что эти области цитоплазмы попадают в строго определенные клетки зародыша, из которых формируются строго определенные ткани.

Механизмы движения цитоплазмы в деталях не изучены. Очевидно, что главную роль в этих перемещениях играет цитоскелет. В частности, важная роль может принадлежать центриоли сперматозоида и отходящим от нее микротрубочкам. С помощью вещества колхицина, нарушающего сборку микротрубочек, ооплазматическую сегрегацию удается подавить.

Можно предположить, что в разных участках цитоплазмы яйцеклетки содержатся различные вещества (их назвали локальными детерминантами, т.е. «определителями»), которые определяют судьбу клеток.

По мере развития организма взаимодействия отдельных клеток сменяются взаимодействиями более крупных элементов зародыша — клеточных комплексов, формирующих структуры, ткани, зачатки органов зародыша. Примером таких влияний служит эмбриональная индукция — взаимодействие элементов развивающегося зародыша, при котором воздействие одного из них направляет (индуцирует) развитие другого. В результате такого взаимодействия запускается цепь морфогенетических (формообразовательных) процессов. Элемент, оказывающий воздействие, назван индуктором. Способность воспринимать индукционное воздействие и отвечать на него определяется как компетенция, а элемент организма, способный реагировать на индукционное воздействие изменением своего развития, назван компетентной тканью. В результате компетентная ткань становится детерминированной (предопределенной) к специфическому типу развития. Далее детерминированное состояние реализуется в процессе дифференцировки (дифференциации).

Следует понимать, что индукционные взаимодействия осуществляются на основе межклеточных, без которых не обходится ни один этап развития.

Феномен эмбриональной индукции был открыт немецким эмбриологом Г. Шпеманом и его ученицей Г. Мангольд в 1921 г. в серии экспериментов по изучению свойств материала хордомезодермы.

Гормональная регуляция — регуляция жизнедеятельности организма животных и человека, осуществляемая при участии поступающих в кровь гормонов; одна из систем саморегуляции функций, тесно связанная с нервной и гуморальной системами регуляции и координации функций. Гормоны выделяются в кровь железами внутренней секреции, разносятся по всему организму и влияют на состояние и деятельность различных органов и тканей.

По характеру действия гормоны могут быть разделены на 2 группы. Одни действуют на определённые органы (органы-мишени), например тиреотропный гормон действует главным образом на щитовидную железу, адренокортикотропный(АКТГ) — на кору надпочечников, эстрогены— на матку и т. д.

Другие гормоны (Кортикостероиды, ростовой, или соматотропный, гормон и некоторые др.) обладают общим, или генерализованным, действием на все ткани организма. Так, инсулин действует на обмен углеводов; активируя гексокиназную реакцию, он также может стимулировать биосинтез белка.

Результаты многих экспериментов позволили предположить, что гормоны обладают способностью активировать гены. Так, введение насекомым гормона линьки — экдизона — вызывает образование особых вздутий на гигантских хромосомах. Анализ этих вздутий показал, что в них происходит интенсивный процессобразования РНК. Поскольку изменения, касающиеся хромосом и синтеза РНК, опережают начало процесса окукливания, считают, что первым результатом действия экдизона является активация генов, затем стимуляция биосинтеза РНК и образование соответствующих ферментов. Последние обеспечивают процесс метаморфоза.

Уважаемые друзья биологи!

Данный сайт я создавал не для заработка. Я на нем не размещаю никакой рекламы и делаю это не из-за этических соображений, а просто потому что биология пока тема не особо доходная. К тому же у меня есть другие проекты на которых я хорошо зарабатываю.

Наверное у вас возник вопрос, а зачем вообще мне все это нужно?

Я еще не так давно учился на биофаке и конечно же возлагал надежды на то, что после окончания буду работать по специальности и заниматься научно исследовательской работой. Однако в аспирантуру не поступил и работу биологом по специальности, которая нормально оплачивается не нашел. После провала вступительных экзаменов в аспирантуру я пошел получать второе высшее образование и теперь занимаюсь программированием.

На данный момент биология это моё хобби. Данный сайт можно назвать сайтом для своих. Если у вас есть идеи о том, как сделать данный проект более серьезным и более полезным вы можете написать мне.

Следует понимать, что индукционные взаимодействия осуществляются на основе межклеточных, без которых не обходится ни один этап развития.

Оплодотворением называют слияние гаплоидного сперматозоида с гаплоидной яйцеклеткой, завершающееся объединением их ядер в единое диплоидное ядро оплодотворенного яйца – зиготы. В процессе оплодотворения сперматозоид выполняет две функции. Первая – активация яйца, побуждение его к началу развития. Эта функция не специфична для сперматозоида: в качестве активирующего фактора он может быть заменен рядом физических или механических агентов, способных спровоцировать развитие зародыша. Развитие яйцеклетки без участия сперматозоида называется партеногенезом. Другая функция сперматозоида, в выполнении которой он уже незаменим, – внесение в яйцеклетку отцовского генетического материала.

Интересное:  При приеме дюфастона овуляция

Взаимодействие половых клеток (гамет) в процессе оплодотворения можно разделить на три фазы: 1) дистантное взаимодействие, осуществляющееся на некотором расстоянии, до соприкосновения гамет; 2) контактное взаимодействие, происходящее при непосредственном соприкосновении поверхностей гамет; 3) процессы, протекающие после вхождения сперматозоида в яйцо (рис. 2.1).

Рис. 2.1. Процесс оплодотворения.

А – фаза дистантного взаимодействия; Б, В, Г – фаза контактного взаимодействия;

Д, Е, Ж, З – фаза синкариона. 1 – мембрана яйца; 2 – студенистая оболочка; 3 – бугорок оплодотворения; 4 — оболочка оплодотворения; 5 – центриоль.

1.1. Дистантное взаимодействие гамет направлено на повышение вероятности встречи сперматозоидов с яйцеклеткой. По большей части эти взаимодействия осуществляются через посредство хемотаксиса – движения сперматозоидов по градиенту концентрации некоторых веществ, выделяемых яйцеклеткой. Наличие хемотаксиса достоверно установлено для многих групп животных, особенно беспозвоночных: книдарий, моллюсков, иглокожих и полухордовых.

В движении сперматозоидов млекопитающих по верхним отделам яйцевода существенное значение имеет явление реотаксиса (способность двигаться против встречного тока жидкости в маточных трубах).

1.2. Контактное взаимодействие гамет начинает осуществляться с момента контакта сперматозоида с оболочками яйцеклетки (рис. 2.2). Первый этап этих взаимодействий получил название акросомной реакции. Иногда эта реакция может быть вызвана не только контактом с блестящей оболочкой яйцеклетки, но также соударением сперматозоида с любой твердой поверхностью или же при повышении концентрации Са 2 +. Внешнее, видимое при небольших увеличениях проявление этой реакции—выброс так называемой акросомной нити в сторону яйцевой оболочки. Тонкие электронно-микроскопические исследования сперматозоидов, фиксированных в период выбрасывания акросомной нити, показали следующее.

Рис. 2.2. Последовательные стадии соединения спермия с яйцом.

А. Б – раскрытие акросомного пузырька; В, Г – высвобождение лизирующих ферментов акросомы;

Д, Е – образование бугорка оплодотворения

Процесс начинается со слияния мембраны акросомы с наружной мембраной сперматозоида. Затем слившиеся мембраны разрываются, и происходит экзоцитоз содержимого акросомного пузырька. При этом из него изливаются спермолизины—ферменты, растворяющие оболочку яйцеклетки. После этого внутренний участок мембраны акросомы начинает быстро выпячиваться, в результате чего образуется одна или целый пучок так называемых акросомных трубочек (или микроворсинок), которые и выглядят при малом увеличении как нити. Акросомная микроворсинка растет в результате быстрой сборки фибриллярного сократительного белка актина, образующего ее структурную основу. Момент соприкосновения акросомной микроворсинки с блестящей оболочкой яйцеклетки — решающий для взаимного узнавания яйцeклeтки и сперматoзoидa.

Это узнавание осуществляется, в случае «правильной» встречи сперматозоида с яйцеклеткой того же вида, благодаря комплементарному взаимодействию особого белка (биндина), встроенного в мембрану акросомной микроворсинки (бывшая внутренняя мембрана акросомного пузырька) с соответственным рецептором на оболочке яйцеклетки. Даже у близких между собой видов биндины различаются по составу. Заключенные, таким образом, до акросомной реакции внутри акросомного пузырька биндины экспонируются (становятся доступными) для связывания рецепторами благодаря выворачиванию и росту акросомной микроворсинки.

Вслед за реакцией узнавания (образования комплекса между биндином и его рецептором в блестящей оболочке) оболочка яйцеклетки лизируется, после чего на ней образуется бугорок оплодотворения, направленный навстречу акросомной микроворсинке. Этот момент считается началом процесса активации яйцеклетки. Формирование бугорка оплодотворения, как и акросомной микроворсинки, сопровождается полимеризацией актина. Мембраны верхушки акросомной микроворсинки и бугорка оплодотворения сливаются между собой, и по образовавшемуся сквозному каналу содержимое сперматозоида (прежде всего ядро и по крайней мере одна из центриолей, но нередко также и хвостовая часть) переходит внутрь яйцеклетки. Участок мембраны сперматозоида встраивается в мембрану яйцеклетки и может сохраняться длительное время, иногда обнаруживаясь иммунологическими методами до стадии личинки (у морского ежа).

Быстрое повышение концентрации Са 2+ также участвует в стимуляции синтеза белка и ДНК и обусловливает наиболее явный признак реакции активации яйцеклетки – экзоцитоз так называемых кортикальных альвеол (рис. 2.3). Это многочисленные пузырьки, содержащиеся в кортикальном (поверхностном) слое неоплодотворенной яйцеклетки. Со стимуляцией ионами Са 2+ процессов экзоцитоза мы уже познакомились на примере экзоцитоза акросомного пузырька.

При экзоцитозе кортикальных альвеол из них высвобождаются в узкое пространство между плазматической мембраной яйцеклетки и плотно примыкающей к ней желточной оболочкой следующие вещества: 1) протеолитический фермент, разрывающий связи между плазматической мембраной и желточной оболочкой,— вителлиновая деламиназа; 2) протеолитический фермент, освобождающий осевшую на блестящей оболочке сперму от связей с этой оболочкой,— сперм-рецепторная гидролаза; 3) гликопротеид, втягивающий воду в пространство между желточной оболочкой и плазматической мембраной и вызывающий тем самым их расслоение: в результате между желточной оболочкой и плазматической мембраной яйцеклетки возникает обширное пространство, называемое перивителлиновым. Образование перивителлинового пространства — наиболее отчетливый признак активации яйцеклетки; 4) фактор, способствующий затвердеванию оболочки оплодотворения; 5) структурный белок гиалин, участвующий в формировании гиалинового слоя, располагающегося у многих яйцеклеток (например, морского ежа) над плазматической мембраной.

1, 2, 3 – стадии акросомной реакции; 5 – блестящая зона; 6 – перивителлиновое пространство;

7 – плазматическая мембрана; 8 – кортикальная гранула; 9 – вождение спермия в яйцеклетку;

Одновременно происходит сборка и перераспределение элементов цитоскелета в кортикальном слое яйцеклетки. Кортикальный слой в результате приобретает сократимость, необходимую для осуществления делений дробления. Образование оболочки оплодотворения надежно предохраняет яйцеклетку от проникновения излишних сперматозоидов — полиспермии.

В первые секунды после контакта гамет резко повышается проницаемость плазматической мембраны яйцеклетки для внешнего Na + , что приводит к падению трансмембранного потенциала яйцеклетки от отрицательного (порядка —60 мВ) до слабо положительного (около +10 мВ). Это падение потенциала осуществляет так называемый быстрый блок полиспермии, так как в яйцеклетки с положительным трансмембранным потенциалом дополнительные сперматозоиды проникнуть уже не могут.

Таким образом, активация яйцеклетки — чрезвычайно быстрая и широкая по охвату реакция, вовлекающая в себя буквально все компоненты яйца.

1.3. Сперматозоид внутри яйца (фаза синкариона).

У большинства животных сперматозоид входит в яйцеклетку целиком, включая хвостовую часть; у некоторых видов жгутик остается на поверхности. Но, и оказавшись внутри яйцеклетки, жгутик сперматозоида не играет никакой роли в дальнейшем движении последнего. Сперматозоид сразу же поворачивается шейкой по ходу дальнейшего движения; вокруг центриоли возникает характерное «полярное сияние», образованное микротрубочками. Хроматин в ядре сперматозоида деспирализуется. Ядро сперматозоида называют теперь мужским пронуклеусом. Хроматин ядра яйцеклетки после завершения делений мейоза тоже деспирализуется. Это ядро называется женским пронуклеусом.

Прежде чем сблизиться, пронуклеусы проделывают сложные движения («танец пронуклеусов»). Сначала мужской пронуклеус движется внутрь яйца перпендикулярно поверхности и независимо от положения женского пронуклеуса. Этот отрезок пути называют «дорожкой проникновения». Затем оба пронуклеуса движутся навстречу друг другу по «дорожке копуляции». Движение мужского пронуклеуса осуществляется, по-видимому, благодаря «отталкиванию» растущих микротрубочек полярного сияния от поверхностного слоя яйцеклетки.

После сближения пронуклеусов наступает кариогамия — объединение их хромосомных наборов. Кариогамия происходит всегда только после завершения яйцеклеткой делений созревания (у большинства животных именно вхождение сперматозоида в яйцеклетку стимулирует завершение этих делений). У тех немногих видов, где сперматозоид проникает в уже зрелую яйцеклетку (например, у морского ежа), кариогамия выражается в непосредственном слиянии пронуклеусов; образуется единое ядро зиготы. В тех случаях, когда между вхождением сперматозоида и кариогамией проходит более длительный срок, оболочки пронуклеусов растворяются еще до их сближения, и хромосомы спирализуются. Тогда кариогамия выражается в том, что хромосомы обоих пронуклеусов располагаются в одной плоскости—плоскости метафазной пластинки 1-го митотического деления оплодотворенного яйца.

2. Ооплазматическая сегрегация – перемещение компонентов яйца после оплодотворения и формирование специфических участков («полей»), детерминирующим в дальнейшем развитие определенных частей зародыша.

Непосредственно после проникновения сперматозоида (или воздействия партеногенетического агента) начинаются интенсивные перемещения цитоплазмы яйцеклетки (ооплазмы). Иногда при этом происходит расслоение, отмешивание различных составных частей ооплазмы, что обозначается как ооплазматическая сегрегация. В ходе этого процесса намечаются основные, хотя и далеко не все, элементы пространственной организации зародыша.

3. Партеногенез.

Как уже говорилось, яйца многих животных могут быть активированы естественно или искусственно, без помощи сперматозоида. Развитие без участия сперматозоида называют партеногенезом. Естественный партеногенез типичен для летних поколений некоторых ракообразных и коловраток; он обнаружен у пчел, ос, ряда чешуекрылых, а из позвоночных — у некоторых видов ящериц и змей.

У млекопитающих также отмечались случаи вступления яйцеклеток на путь партеногенетического развития либо самопроизвольно, либо под влиянием различных активирующих агентов, например электростимуляции, теплового шока, этанола. Однако развитие таких зародышей всегда останавливалось на ранних стадиях развития. В некоторых случаях спонтанного партеногенеза дробящиеся зародыши становятся источниками опухолей яичника — тератом, в которых могут развиваться зачатки органов. Полноценное развитие партеногенетиков у млекопитающих невозможно потому, что в женских хромосомах заблокированы (в результате метилирования) определенные участки, содержащиеся в мужских хромосомах. Именно поэтому самец не может быть заменен у млекопитающих партеногенетическим агентом.

Лишь в редких случаях партеногенетически развивающиеся организмы являются гаплоидами (таковы самцы медоносной пчелы), В большинстве случаев после партеногенетической активации яйцеклетки в ней восстанавливается диплоидный набор хромосом.

Разновидностью партеногенеза является гиногенез — оплодотворение спермой другого (родственного) вида, которая лишь активирует яйцеклетку, но не вносит свой генетический материал в геном зародыша. Например, яйца серебряного карася могут быть стимулированы спермой сазана; плотвы, обыкновенного карася. В популяциях гиногенетических животных встречаются только самки. Имеются данные, что гиногенез может быть вызван искусственно термошоком для облучением яйцеклетки.

Андрогенез – явление, обратное партеногенезу, т.е. развитие яйцеклетки с участием только мужского ядра. Известны случаи естественного андрогенеза; андрогенетики встречаются у табака и кукурузы, иногда у тутового шелкопряда.

Андрогенез может быть вызван и искусственно. Еще в начале 19 века были поставлены опыты по оплодотворению фрагментов яиц морского ежа, лишенных собственного ядра. Такая разновидность искусственного андрогенеза, когда оплодотворяется фрагмент яйца, называется мерогонией.

II. Методические указания к выполнению лабораторной работы.

1. Изучить стадии оплодотворения по методическому пособию.

2. Ознакомиться с механизмами дистантного и контактного взаимодействия спермиев и яйцеклетки.

2.1. Зарисовать схему фазы дистантного взаимодействия (планшет № 2.1 «Дистантное и контактное взаимодействие спермиев и яйцеклетки»). Указать процесс капацитации сперматозоида (зарисовать рецепторы головки сперматозоида, процесс отделения углеводов с поверхности головки, процесс связывания рецепторов сперматозоида с НАГ-рецепторами).

2.2. Зарисовать фазу контактного взаимодействия. Отметить процесс связывания рецепторов сперматозоида с рецепторами яйцеклетки, процесс проникновения сперматозоида через оболочку яйцеклетки.

3. Ознакомиться с этапами акросомной реакции спермиев и кортикальной реакцией яйцеклетки по методическому пособию.

3.1. Зарисовать схему оплодотворения с указанием фазы контактного взаимодействия и синкариона (планшет № 2.2 «Оплодотворение; дробление»). Отметить период созревания, указать редукционные тельца. Рассмотреть и описать формирование мужского и женского пронуклеуса. Выделить оболочку оплодотворения.

4. Изучить процесс синкариона по методическому пособию.

4.1. Изучить под микроскопом и зарисовать препарат № 5.

Препарат № 5. Оплодотворение яйцеклетки. Яйцо аскариды с внедрившимся сперматозоидом (рис. 2.4).

Рис.2.4. Оплодотворение яйца аскариды:

1 – головка проникшего в яйцеклетку сперматозоида.

Препарат представляет собой группу яйцеклеток аскариды. Выберем при малом увеличении и поставим в центр поля зрения клетки, в которых отчетливо различимо содержимое. Переменив малое увеличение на большое, рассмотрим в них мелкозернистую цитоплазму и два ядра: одно более рыхлое, нередко в состоянии митоза – это женское ядро (яйцеклетка), другое более компактное, нередко еще сохраняющее треугольную форму, – это еще не вполне разбухшая головка спермия – мужское ядро. Эти ядра носят название пронуклеусов. Следовательно, здесь зафиксирован момент непосредственно после внедрения спермия в яйцо. В отдельных яйцеклетках между наружным краем протоплазмы и оболочкой сохранилось еще мелкое образование – направительное тельце.

Зарисуйте несколько клеток при большом увеличении.

4.2. Изучить под микроскопом и зарисовать препарат № 6.

Препарат № 6. Синкарион.Матка аскариды с оплодотворенными яйцеклетками (рис.2.5).

Препарат представляет собой поперечный разрез матки аскариды, набитой яйцеклетками. Последние окружены толстыми оболочками. Некоторые яйцеклетки еще не оплодотворены, в другие уже проникли сперматозоиды.

Изучаемый препарат фиксирует дальнейший этап оплодотворения: сближение и соединение женского и мужского ядра.

Рис. 2.5. Образование синкарионав в яйце аскариды:

1 – оболочка яйцеклетки; 2 – второе направительное тельце.

При малом увеличении, а еще отчетливее при большом, мы различаем в отдельных клетках соприкасающиеся, но еще лежащие отдельно ядра, в других оболочки ядер уже растворились и хромосомы объединились в общую группу.

Зарисуйте 2–3 наиболее типичные клетки при большом увеличении.

5. Ознакомиться с механизмом партеногенеза по методическому пособию.

6. Сдать отчет преподавателю и защитить его.

Отчет должен быть представлен на отдельных листах формата А4 или в альбоме.

2. Краткое описание фаз оплодотворения.

3. Результаты исследований (микроскопическое изучение препаратов) и их анализ (с указанием использованных микроскопов, их увеличения, других приборов и материалов).

4. Результаты выполнения индивидуального задания (определение и описание «слепого» препарата).

Отчет на листе формата А4 сдается в конце работы преподавателю.

IV. Контрольные вопросы.

1. Перечислите стадии оплодотворения.

2. В чем заключается молекулярный механизм акросомной реакции?

3. В чем заключается механизм кортикальной реакции?

4. Что такое ооплазматическая сегрегация.

5. Объясните биологическую сущность партеногенеза.

Рекомендуемая литература.

1. А.В.Белоусов. Биология индивидуального развития., 1983.

2. К.Г.Газарян. Биология индивидуального развития животных.,1983.

3. О.В.Волкова. Атлас. Гистология, цитология, эмбриология, 1996.

3. Результаты исследований (микроскопическое изучение препаратов) и их анализ (с указанием использованных микроскопов, их увеличения, других приборов и материалов).

Давайте будем совместно делать уникальный материал еще лучше, и после его прочтения, просим Вас сделать репост в удобную для Вас соц. сеть.

Ссылка на основную публикацию